THERMODYNAMIC FUNCTIONS FOR HALOGENATED NAPHTHALENES

D. G. McFEE Northwood Pulp, Prince George, B.C. (Canada)

AND J. LIELMEZS Chemical Engineering Department, The University of British Columbia, Vancouver, B.C. (Canada) (Received 3 May 1978)

ABSTRACT

Thermodynamic functions (heat capacity, enthalpy, entropy and free energy) have been calculated for naphthalene and 11 halogenated naphthalenes in the ideal gas state from 273.15 to 1200 K at 1 atm pressure. All the functions were obtained by statistical-mechanical calculation methods. Agreement with experimental results, where such are available, is satisfactory.

INTRODUCTION

The published molecular structural and spectroscopic data have enabled the calculation of thermodynamic functions — heat capacity, enthalpy, entropy and free energy — for naphthalene^{2, 5, 7, 8, 10-12, 14-26} and 11 halogenated naphthalenes 3, 5, 6, 9, 20, 27, 28 in the ideal gas state at 1 atm pressure.

The functions for each given compound were calculated by means of the well-

TABLE 1

COMPARISON OF EXPERIMENTAL AND CALCULATED THERMODYNAMIC FUNCTION VALUES FOR NAPHTHALENE

Ref.	C_{p^0} (cal/gmole	K)	S ⁰ (e.u.)	
	451.0 K	522.7 K	451.0 K	522.7 K
2 (Experimental	48.10	54.17	96.80	104.41
work)	±0.48	±0.54	± 0.44	±0.44
18	47.69	53.81	96.95	104.55
19	48.14	54.27	96.81	104.47
22	48.23	53.99	96.49	104.10
10	48.67	54.87	96.87	104.62
26	48.19	54.38	96.35	103.90
27	47.40	53.56	96.35	103.90
This work	48.73	54.92	96.98	104.63

Tempera- ture (K)	Naph- thalene	&-Fluoro- napti- thalene	α-Chiloro- napi- thalene	c-Bromo- naph- thalene	&-Iodo- naph- thalene	ß-Fluoro- naph- thalene	β-Chloro- naph- thalene	β-Bromo- naph- thalene	β-Ivdo- naph- thalene	1,4-Di- chloro- naph- thalene	1,4-Di- bromo- naph- thalene	2,3-Di- bromo- naphthalene
	10 11											
451,00	ие А./ 48.73	51.45	52.27	52.61	52,80	51,88	52.33	52.68	52.84	55,70	56.35	56.24
522.70	54.92	57.53	58,23	58.51	58,67	57,89	58,28	58.55	58.69	61.44	61.97	61.91
273.15	29.31	32.02	33,23	33.86	34,19	32,62	33.28	33.95	34.30	37.01	38.15	37.86
298,15	32.28	35.05	36,20	36,77	37,07	35,64	36.26	36.87	37.17	39.98	41.03	40.77
300,00	32.50	35.27	36,42	36.98	37,28	35,86	36.48	37.08	37.38	40.20	41.24	40.98
350,00	38.29	41.10	42,12	42.59	42,85	41,64	42.20	42.69	42.93	45.84	46.72	46.51
400.00	43.70	46.48	47.40	47.80	48,02	46.97	47.47	47.89	48.08	50,99	51.74	51.59
450.00	48.64	51.36	52,18	52.52	52,71	51.79	52.24	52.59	52.75	55.62	56.26	56.15
500.00	53.07	55.72	56.45	56.74	56,91	56,10	56.51	56.80	56.94	59,73	60.29	60.22
550.00	57.03	59,59	60.26	60.51	60.66	59,93	60.30	60.54	60.67	63.38	63.87	63.82
600.00	60.57	63.05	63,64	63.86	63,99	63,34	63.68	63.87	64.00	66,61	67.04	67.01
650.00	63.74	66,12	66,66	66.85	66,97	66,39	66.69	66.85	66.98	69,48	69.87	69.85
700.00	66.60	68,88	69,36	69.53	69,64	11.69	69.39	69.51	69.64	72.04	72.39	72.38
750.00	691.7	71.36	71.79	71.95	72.05	71.57	71.81	06.17	72.04	74.34	74.65	74.65
800.00	71.50	73,59	73.99	74.13	74.22	73,78	74.01	74.07	74.21	76.41	76.69	76.69
850.00	73.63	75.62	75,98	76.11	76.19	75.79	76.00	76.03	76.18	78,28	78.53	78.54
900.006	75.55	77.46	<i>27.79</i>	16.77	77.98	77,61	77.80	77,82	79.77	79.97	80.20	80.21
950.00	77.32	79.14	79,44	79.55	79.62	79,28	79.46	79.45	79.61	81.51	81.72	81.73
1000.00	78.94	80,68	80.95	81.05	81,11	80,80	80.96	80.94	81.10	82.92	83.11	83.12
1050.00	80.43	82,08	82.34	82.43	82,49	82.20	82.35	82,31	82.48	84,20	84.38	84.39
1100.00	81.80	83.37	83.61	83.69	83.75	83.48	83.62	83,57	83.74	85.38	85.54	85.55
1150.00	83.07	84,56	84.78	84.86	84,91	84.66	84.79	84.73	84,90	86.46	86.61	86,62
1200.00	84,23	85,66	85,86	85.93	85,98	85.75	85.87	85.80	85.97	87,45	87.59	87.60

HEAT CAPACITY, ENTROPY, FREE ENERGY FUNCTION AND ENTHALPY FUNCTION

TABLE 2

(cal/mo	le K)											
õ	96.98	104,83	108.17	111.39	113.81	105.85	107.94	111.17	113.65	114.46	20.10	120.76
02	104.63	112.87	116.32	119.59	122.03	113.95	116.10	119.38	121.88	01-271	128.83	129.48
15	77.62	84.07	86.91	89.89	92.18	84.83	86.64	89.63	91.98	58°tā	96.55	97,31
15	80.32	87.01	89.95	92.98	95.30	87.82	89.69	92.72	95.11	9 4.72	100.02	100.75
8	80.52	87.23	90.17	93.21	95.53	88.04	89,91	92.95	95,34	18'ba	100.27	10,101
8	85,96	93,11	96.22	99.34	101.70	94.01	95.97	99.10	101.52	101.39	07.05	107.74
8	91.44	98,95	102.19	105.37	107.76	99.92	101.95	105.14	107.60	108.05	13.62	114,29
8	96.87	104.71	108.06	111.28	113.69	105.74	107,82	111.06	113.53	119.23	19.98 j	120,64
8	102.23	110.35	113.78	117.03	119.47	111.42	113.55	116.82	119.31	120.41	126.12	126.77
8	107.48	115.85	119.34	122.62	125.07	116.95	119.12	122.41	124.92	87.91	132.04	132,68
8	112.59	121.18	124.73	128.03	130.49	122.31	124.51	127.82	130.34	59.151	137.73	138.37
8	117.57	126.35	129.95	133.26	135.74	127.51	129.73	133.06	135.58	137.38	43.21	143,85
8	122.40	131.36	134.99	138.32	140.80	132.53	134.78	138.11	140.65	142.02	148.48	149.12
8	127.08	136.20	139,86	143.20	145.69	137.38	139.65	142.99	145.54	147.67	153.56	154.19
8	131.62	140.87	144,56	147.91	150.41	142.07	144.35	147.70	150.26	152.94	158.44	159.08
8	136.02	145.40	149.11	152.47	154.97	146.60	148.90	152.25	154.81	157.23	j63.15	163.78
8	140.29	149.77	153.50	156.87	159.37	150,99	153.30	156.65	1 59.22	161.75	67.68	168.32
8	144.42	154.01	157.75	161.13	163.63	155.23	157.55	160.90	163.48	J 66.12	J72.06	172.70
00	148.43	158.10	161.87	165.25	167.76	159.34	161.66	165.01	167.60	170.33	76.29	176.93
8	152.32	162.07	165.85	169.23	171.75	163.31	165.65	169.00	171.59	179.41	₁ 80.37	181.02
8	156.09	165.92	169.71	173.10	175.62	167.17	169.51	172.85	175.46	178.36	84.33	184.97
8	159.75	169.66	173,46	176.85	179.36	170.90	173.25	176.59	179.21	182.18	88.15	188.79
8	163.31	173.28	177,09	180.48	183.00	174.53	176.88	180.22	182.84	113.28	91.86	192.50

Tempera- ture (K)	Naplı- thalene	x-Fluoro- naph- thalene	∝-Chloro- naph- thalene	a-Bromo- naph- thalene	æ-lodo- naph- thalene	β-Fluoro- naph- thalene	β-Chloro- naph- thalene	β-Bromo- naph- thalene	ß-lodo- naph- thalene	1,4-Dı- chloro- naplı- thalene	I,4-Di- bromo- naph- thalene	2,3-Di- bromo- naplatialene
- (F ⁰ -	$H_{0}^{0})/T(cally$	nole K)										
451.00	71.87	77.73	80,09	82.71	84.74	78.31	79.90	82.51	84.58	83.57	88,15	89,01
522.70	75.84	82.00	84.51	87.21	89.30	82.65	84.31	87.01	89.14	88.40	93.14	93,97
273.15	61,82	66.81	68,68	70.97	72,78	67,18	68.53	70.79	72.63	70.87	74.88	75.84
298.15	63.26	68.38	70.34	72.68	74.54	68.78	70.17	72.50	74.39	72.72	76.84	77.78
300.00	63,37	68.49	70,46	72.81	74,66	68.90	70.29	72.63	74.52	72.86	76.98	77,93
350.00	66.21	71.59	73.71	76.16	78.09	72.06	73.53	75.97	77.93	76.49	80.80	81.71
400.00	69,02	74,65	76,89	79.44	81.42	75.18	76.71	79,24	81.26	80.04	84.49	85.37
450.00	71.81	77.67	80.03	82.65	84,68	78.25	79.84	82.45	84.52	83.50	88.08	88.94
500.00	74.59	80.65	83.12	85.80	87.87	81.28	82.93	85.60	87.71	86.89	91.58	92.42
550.00	77,34	83.61	86.16	88.90	91.00	84.28	85.97	88,69	90,84	90,20	94.99	95.81
600,009	80,06	86.52	89.15	91.93	94,06	87.22	88.95	91.73	93.91	93.45	98.32	99,12
650.00	82.76	89.38	92,09	94,91	10.76	90.12	91,89	94.71	96.91	96.62	101.56	102.35
700.00	85.42	92.20	94.98	97.83	100.01	92.97	94.78	97.63	99,86	99.72	104.73	105.51
750.00	88,04	94.98	97.81	100.70	102.90	95.77	97.61	100.49	102.74	102.75	107.81	108.59
800.00	90.62	97.70	100.58	103.50	105.72	98.52	100.38	103.30	105.56	105.71	110.83	111.59
850.00	93.17	100.37	103.30	106.25	108.48	101.22	103.10	106.04	108.33	108.60	113.77	114.52
900.006	95.67	103.00	105.97	108.94	111.19	103.86	105.77	108.73	111.03	111.43	116.64	117.39
950.00	98,12	105.57	108.59	111.57	113.84	106.45	108.38	111.37	113.68	114.19	119.44	120.18
1000,00	100.54	108.09	111.15	114,16	116.43	109.00	110.95	113.95	116.28	116,90	122.18	122.91
1050.00	102.91	110.57	113.66	116,68	118.97	111.49	113.46	116.47	118.82	119.54	124.85	125.58
1100.00	105.24	113.00	116.12	119.16	121.46	113.93	115.92	118.95	121.30	122.12	127.47	128.19
1150.00	107.54	115.38	118.53	121.59	123.89	116.33	118.33	121.37	123,74	124.65	130.02	130.75
1200.00	109.79	117.72	120.90	123.97	126.28	118.68	120.69	123.75	126.13	127.13	132.52	133.24

TABLE 2 (continued)

e K) 27.10 28.08 28.68 29.07 30.87 31.82 32.38 32.74 17.26 18.23 18.92 19.40 18.63 19.61 20.30 20.76	28.08 28.68 29.07 31.82 32.38 32.74 18.23 18.92 19.40 19.61 20.30 20.76	28.68 29.07 32.38 32.74 18.92 19.40 20.30 20.76	29.07 32.74 19.40 20.76		27.54 31.30 17.65 19.03	28.04 31.79 18.11 19.51	28.66 32.37 18.83 20.22	29.07 32.74 19.35 20.73	30.89 34.70 20.48 21.99	31.95 35.69 21.68 23.18	31.75 35.51 21.47 22.97
17.15	18.73	19.17	20.40	20.87	19.14	19.62	20.32	20.83	22.10	23.29	23.08
19.76	21.51	22.51	23.17	23.61	21.94	22.44	23.12	23.59	25.10	26.25	26.04
22.42	24.30	25.30	25.93	26.34	24.74	25.24	25.90	26.33	28.02	29.13	28.92
25.06	27.04	28.02 30.66	28.63 31.23	31.60	27.49	27.98 30.63	28.61	31.60	30.83 33.52	31.90	31.70
30.14	32.24	33.18	33.73	34.07	32.67	33.15	33.72	34.08	36,07	37.05	36.87
32.53	34.67	35.58	36,10	36.43	35.09	35.56	36.10	36.43	38,49	39.42	39.25
34.81	36,97	37.86	38,35	38.67	37.38	37.84	38.35	38.67	40.76	41.65	41.50
36.98	39.15	40.01	40,49	40.79	39.55	40.00	40.48	40.79	42.91	43.76	43.61
39.04	41.22	42.05	42,50	42.79	41.61	42.04	42.50	42,80	44.93	45.74	45.61
41.00	43.17	43.98	44,41	44.69	43.55	43.97	44.40	44,69	46.83	47.61	47.49
42.86	45.02	45.80	46.22	46.49	45.39	45.80	46.21	46.49	48.63	49.38	49.26
44.62	46.78	47.53	47.93	48.19	47.13	47.53	47.91	48.19	50.32	51.05	50.94
46.30	48.44	40.17	40.55	40.80	48.78	40.16	40 53	40 80	51 02	57 67	57 57
47.89 49.40	50.01 51.50	50.72 52.19	51.09	51.33 52.78	50.34 51.83	50.72 52.19	51.07	51.33 52.78	53.44 54.87	54.11 55.52	54.01 55.43
50.85	52.92	53.59	53.94	54.16	53,24	53,59	53.90	54.16	56.23	56.86	56.77
52.22	54.27	54.92	55.26	55.47	54,58	54,92	55.22	55.47	57.52	58.13	58.05
53.53	55.56	56.19	56.51	56.72	55,85	56,19	56.47	56.72	58.75	59.34	59.26

TABLE 3

CALCULATED CONSTANTS a, b, c, d and e in Eqn. (1)

 C_{p^0} (cal/mole K)

Compound	а	b × 10	$c \times I0^3$	$d \times 10^7$	e × 1011
Naphthalene	-16.74295	0.21069	-0.17445	0.68870	-0.94559
α-fluoronaphthalene	-15.33987	0.22027	0.19596	0.86066	-1.43878
α-chloronaphthalene	-13.16016	0.21574	-0.19187	0.84339	-1.41186
α -bromonaphthalene	-11.50632	0.21007	-0.18345	0.78441	
α-iodonaphthalene	-10.66078	0.20718	-0.17893	0.75091	-1.11592
β -fluoronaphthalene	-14.50212	0 21981	0.19804	0.88957	-1.54485
β -chloronaphthalene	-13.32027	0.21735	-0.19573	0.87888	-1.52528
β -bromonaphthalene	-11.59713	0.21161	-0.18735	0.81728	-1.34757
β -iodonaphthalene	-10.39375	0.20652	0.17867	0.75432	-1.18073
1,4-dichloronaphthalene	- 9.86833	0.22173	0.21117	1.01586	-1.93825
1,4-dibromonaphthalene	— 6.98409	0.21223	0.19729	0.91926	-1.67961
2,3-dibromonaphthalene	- 7.93113	0.21566	0.20184	0.94576	-1.73626
S ⁰ (e.u.)					
Compound	a	$b \times 10$	$c \times 10^4$	$d \times 10^7$	e × 1010
Naphthalene	48.81033	0.96560	0.48684	-0.67110	0.21477
α-fluoronaphthalene	51.41003	1.15885	0.26144	-0.53474	0.18132
α-chloronaphthalene	52.42870	1.25940	0.11077	-0.42844	0.15261
α-bromonaphthalene	54.48724	1.31269	0.02463	-0.36452	0.13475
α-iodonaphthalene	56.30194	1.33949	-0.17380	-0.33386	0.12625
β -fluoronaphthalene	51.21547	1.21157	0.18254	-0.47953	0.16655
β -chloronaphthalene	52.03847	1.26611	0.10124	0.42229	0.15111
β -bromonaphthalene	54.03839	1.32247	0.01119	-0.35730	0.13332
β -iodonaphthalene	55.90233	1.35151	-0.03865	-0.31756	0.12165
1,4-dichloronaphthalene	51.37451	1.54425	-0.25418	-0.19272	0.09219
1,4-dibromonaphthalene	54.88530	1.64102	-0.40848	-0.07917	0.06063
2,3-dibromonaphthalene	56.13467	1.61129	-0.35546	-0.12031	0.07238
$-(F^0-H_0^0)/T(cal mole\ K$)				
Compound	a	b × 10	$c \times 10^5$	$d \times 10^8$	e × 1011
Naphthalene	46.36369	0.55894	0.50762	-0.190349	0.22420
α-fluoronaphthalene	49.53465	0.63701	0.03936	-0.76674	0.21337
a-chloronaphthalene	50.05797	0.70426	0.07342	-0.29725	0.09803
a-bromonaphthalene	51.33951	0.75714	-0.43484	0.16910	-0.02388
α-iodonaphthalene	52.46388	0.79360	-1.93483	0.51039	-0.11472
eta-fluoronaphthalene	49.37041	0.66260	-0.21542	-0.63199	0.18403
eta-chloronaphthalene	50.07210	0.69424	0.55902	-0.43286	0.13688
β -bromonaphthalene	51.30887	0.74815	-1.26393	0.02922	0.01720
β -iodonaphthalene	52,39633	0.78871		0.42938	-0.09031
1,4-dichloronaphthalene	49.32930	0.83678	-1.80866	0.19555	-0.00226
1,4-dibromonaphthalene	51.62193	0.92635	2.97298	0.96164	-0.19649
2,3-dibromonaphthalene	52.89310	0.91047	-2.77655	0.84185	-0.16768

TABLE 3 (continued)

$(H^0 - H_0^0)/T(cal/mole K)$

Compound	а	b × 10	$c \times 10^5$	$d \times 10^8$	$e \times 10^{11}$
Naphthalene	2.44651	0.40666	0.43607	-0.58075	1.92349
α -fluoronaphthalene	1.87515	0 52186	0.25747	-0.45803	1.59965
a-chloronaphthalene	2.37070	0.55514	0.18419	-0.39872	1.42808
α-bromonaphthalene	3.14751	0.55557	0.16807	-0.38139	1.37119
<i>a</i> -iodonaphthalene	3.83801	0.54590	0.17609	0.38489	1.37719
β -fluoronaphthalene	1.84529	0.54896	0.20411	-0.41636	1.48159
β -chloronaphthalene	1.96621	0.57187	0.15711	-0.37897	1.37409
β -bromonaphthalene	2.72961	0.57432	0.13758	0.36022	1.31604
β -iodonaphthalene	3.50601	0.56281	0.14515	0.36051	1.30686
1.4-dichloronaphthalene	2.04539	0.70747	-0.07330	-0 21229	0.91978
1.4-dibromonaphthalene	3 26339	0.71467	-0.11118	-0.17533	0.80276
2,3-dibromonaphthalene	3.24172	0.70081	-0.07779	-0.20452	0.89159

known statistical-mechanical methods¹. Agreement with experimental values, where such are found, is satisfactory (Table 1).

The results presented in Table 2 were fitted to five constant polynomials of the form

$$\Lambda = a + bT + cT^2 + dT^3 + eT^4$$
 (1)

where Λ is the thermodynamic function at temperature T (K). The constants a, b, c, dand e (eqn. 1) were obtained using linear least squares curve fitting methods²⁹ and are found in Table 3. Table 4, however, presents the values of the molecular parameters used in thermodynamic function calculations. The accuracy and scope of this work is bound by its purpose to present a set of calculated thermodynamic function tables for use in chemical engineering problems.

DISCUSSION

Naphthalene

Although naphthalene is one of the simplest polycyclic compounds, there is no general agreement regarding the fundamental vibrational assignments for this molecule^{2, 5, 7, 8, 10-12, 14-26}. For thermodynamic function calculations this problem is even more aggravated by the scarcity of calorimetric data. Indeed, the only direct calorimetric measurements for naphthalene are those of Barrow and McClellan² who obtained the C_p^0 and S^0 values at two temperatures (451.0 and 522.7 K) near the normal boiling point (491.15 K). As shown in Table 1, the experimental data accuracy is suggested to be $\pm 1.0\%$.

The greatest uncertainty in naphthalene vibrational series is found in the lowest skeletal (A_u -mode) vibration which has been predicted by Scully and Whiffen²⁶ to be 207 cm⁻¹. However, other investigators^{18, 19, 22, 27} have arbitrarily chosen this

Naplı- thalene ^a	α-Fluoro- naph- thalene ^a	∝-Chloro- naph- thalene ^a	α-Bromo- naph- thalene ^a	α-lodo- naph- thalene⁰	β-Fluoro- naph- thalene ⁿ	β-Chloro- naph- thalene ⁿ	β-Bromo- naph- thalene ^a	β-lodo- naph- thalene ^a	I,4-Di- chloro- naph- thalene ^a	I,4-Di- bromo- naph- thalene ⁿ	2,3-Dibromo- naph- thalene ^a
Fundamente 176,213 285,361 388,476 508,512 575,619 724,747 762,783 785,843 870,875 935,935 945,958 945,958 945,958 979,1019 1132,1139 1132,1139 1132,1139 1132,1139 1132,1139 1132,1139 11442,1462 11212,1242 1212,1242 1212,1242 1212,1242 1212,1242 1212,1242 1212,1242 1212,1242 1212,1242 1212,1242 1212,1242 1212,1242 1212,1242 1212,1242 1212,1242 1212,1242 1212,1242 1212,1242 13060 ^b ,3031 ^b 3056 ^b ,3076 ^b	<i>I frequencies</i> , 530,158 530,158 270,361 417,475 512,570 620,710 770,750 877,1157 1231,1217 1231,1217 1264,1350 1385,1407 1264,1350 1385,1407 1264,1356 1514,1576 1604,1624 ^h 790,795 860,886 860,886 860,886 860,956 270,967 967,1037 967,1037 967,1037 2070,50 270,956 270,956 270,956 270,956 270,957 2070,50 270,956 270,3060 ^h 3027 ^h ,3076 ^h 2070,5076 ^h	 <i>p</i> (<i>cm</i>⁻¹) 180,135 240,355 240,355 408,474 513,534 603,663 603,663 795,850 827,790ⁱⁱ 795,850 827,790ⁱⁱ 795,850 945,220 945,216 1142,1162 1142,1162 11250,1340 11250,1340 1142,1162 11250,1340 1142,1162 1142,1162 11250,1340 11250,1340 1143,1145 11505,1216 11205,1216 11205,1216 11205,1216 11205,1216 1143,1145 1143,1145 1143,1145 1143,1145 1144,146 1144,	180°,125 235,362 406,473 512,528 580,651 766,745 806,790 ^d 791,855 950,175 950,175 950,175 950,175 950,175 950,175 950,175 950,175 1204,1216 1144,1167 1204,1216 1144,1167 1204,1216 1368,1378 1434,1455 1501,1561 1594,1624 ^b 3076 ^b ,3060 ^b 3076 ^b ,3060 ^b 3076 ^b ,3060 ^b	180°,125 226,362 405,478 510,524 568,640 767,745 797,790 ^d 791,858 883,858 950,151 945,945 967,1022 256,1131 1143,1160 1203,1215 1249,1331 1143,1160 1223,1215 1249,1331 1365,1377 1428,1450 1499,1552 1297 ^h 3027 ^h 3031 ^h ,3060 ^b 3060 ^h ,3076 ^h	191,147 310,355 422,480 519,522 620,708 747,750 768,795 862,862 955,218 943,967 955,218 943,967 955,218 943,967 955,1134 1149,1160 1215,1249 1215,1249 1215,1249 1267,1355 1383,1390 1215,1258 3076 ^h ,528 3031 ^h ,3027 ^b 3060 ^h ,3076 ^h	191,138 280,352 410,478 510,517 605,644 749,746 768,795 862,642 955,218 943,967 955,218 943,967 955,1025 357,1134 1144,1155 1195,1239 1267,1346 1382,1370 1437,1453 1504,1575 1604,1624 ^b 3076 ^b ,399 2987 ^b ,3076 ^b	191,135 274,355 395,478 502,514 580,630 749,745 765,795 861,861 954,175 937,964 954,175 937,964 954,175 937,964 149,1156 1149,1156 1149,1156 11377,1366 11377,1366 1273,1347 1377,1366 1233,1571 1377,1366 1233,1571 1377,1366 1233,1571 1377,1366 1233,1571 1377,1366 1233,1571 1377,1366 1233,1571 1377,1366 1233,1571 1377,1366 1233,1571 1377,1366 1233,1571 1377,1366 1233,1571 1377,1366 1233,1571 1377,1366 1233,1571 1377,1366 1233,1571 1377,1366 1233,1571 1377,1366 137	191,122 253,355 386,477 498,515 568,627 737,745 737,745 765,794 817,860 860,868 951,164 937,965 951,169 1196,1239 1147,1159 1196,1239 1196,1239 1196,1239 1196,1239 1196,1239 1196,1239 1272,1343 1272,1343 1272,1343 1272,1343 1272,1343 1272,1343 1272,1343 1272,1343 1272,1343 1272,1343 1272,1343 1272,1343 1272,1343 1272,1343 1272,1343 1272,1343 1272,1343 1272,1343 1277,1343 17	188, 150 224, 371 411, 494 517, 530 597, 676 755, 745€ 826, 790 816, 328 900, 824 926, 120 926, 120 926, 120 926, 120 926, 120 926, 120 926, 120 153, 1371 11415, 1450 1502, 11560 1502, 1560 1502, 1500 1502, 1500 1500, 15000 1500, 15000 1500, 15000 15000, 150000 15000000000000000000000000000000	185,140 215,371 ^h 409,470 517 ^h ,527 560,662 753,745 ^g 823,791 814,289 905,823 956,963 956,963 956,963 956,963 956,963 956,963 956,963 174,1142 174,1142 174,1142 1161,377 1207,1187 1256,1368 1410,1450 1494,1556 1306 ^b 3076 ^b 3076 ^b 3076 ^b	174,139 249,357 406,481 574,593 607,635 758,745 [#] 784,814 862,132 878,890 957,294 890,947 961,1019 139,1136 1148,357 1192,1198 1301,1418 1301,1418 1262,1338 1262,1338 1262,1338 1301,1418 1301,1418 1301,1418 1301,1418 1301,1418 1301,1418 1301,1418 1301,1418 1301,1418 1301,1418 1301,1418 1301,1418 1301,1418 1301,1418 1301,1418 1301,1418 1301,1306 1376,1256 1376,1256 1376,1256 1376,1256 1377,3027 ^b 3076 ^b ,249 3076 ^b ,3076 ^b

:

ľ

L

3

1

MOLECULAR PARAMETERS

ABLE4

<i>Product o</i> , 166,916 × 10 ⁻¹¹⁷	the principa 371,534 × 10-117	l moments of 722,355 × 10-119	intertia (BHB ³ c 1,566,399 × 10^117	וון ⁰⁾¹ 2,598,055 × 10-117	394,367 × 10 ⁻¹¹⁷	772,005 × 10 ⁻¹¹⁷	1,726,077 × 10 ⁻¹¹⁷	2,860,927 × 10^{-117}	2,398,517 × 10- ¹¹⁷	10,377,640 × 10-11	6,2 3,850 × 0-117
Symmetry 4	number 1		-	-	1	1	-	-	7	ኇ፝፟፝ዾ	-
Molecular 128.19	. <i>weight</i> 146.17	162.62	207.08	254.07	146,17	162.62	207,08	254.07	197.07	265,97	785.97
Normal b _i 491.15	oiling point (1 488.15	K) 531.95	554.13	575.15	490.15	529.15	554,15	581,15	563.15	\$60.00	<i>ξ</i> ξίγ.00
 These a ^b Assignment ^c This is 	ssignments a nents made b assigned valu	re made by I by Sharma an Le (this work	Michaelian an A Singh ² 7 c). It is a _{Ss} un	d Ziegler ²⁰ w isd that <i>a</i> -flu	ith exception loro-naphtha	ls indicated b lene B ₁ vib	y separate fo rational mod	otnotes, e is of the sc	une frequenc	y as those of	ແດ່ກູ່loro- and

i F . 322 n a tris is assigned value (unit work), a-lodo-naphthalenes²⁰.

^d Assigned, this work.

^e Assigned, this work. Value taken in analogy with α -bromonaphthalenes²⁰. ^t Assigned, this work. Value taken in analogy with α -iodonaphthalenes²⁰. ^g Assigned, this work. Value was taken in Accordance with monosubstituted naphthalenes²⁰.

¹¹ Assigned, this work, with the same value a_9 the corresponding frequency in 1,4-dichloro-naphthalenc²⁰. ¹ All moments of inertia have been calculated from the available structural data — see the pertinent discussions in the text of this work.

ź

Ş

frequency as 400 cm⁻¹ to match the experimentally obtained heat capacity and entropy values (Table 1). More recently, however, Michaelian and Ziegler²⁰ while evaluating their IR and Raman spectra work for a series of halogenated naphthalenes, have set this frequency as 213 cm⁻¹. The reassignment of this particular frequency to 213 cm⁻¹ has been also recently confirmed by Bree and Kydd³ and by Chantry et al.⁶.

These differences in frequency assignment values have prompted us to reevaluate the overall thermodynamic consistency of frequency assignments for naphthalene as found in the literature^{2, 5, 7, 8, 10-12, 14-26}. The work of this re-evaluation is presently under way.

However, at this time we present calculated thermodynamic functions for naphthalene in the ideal gas state (Tables 2, 3 and 4) using the data of Michaelian and Ziegler²⁰, supplemented by the highest nine fundamental vibration values (which have not been assigned by Michaelian and Ziegler) of Sharma and Singh²⁷. The moment of inertia product was recalculated using the bond distances of Cruikshank⁷ and assuming that the naphthalene molecule is planar with all bond angles of 120° (Table 4).

Table 1 compares thermodynamic function values as obtained in this work (using Sharma and Singh²⁷ frequency assignments) with experimental values² and with calculated values using frequency assignments of other investigators^{2, 10, 18, 19, 22, 26, 27}. Comparing (Table 1) we see that our work with the lower frequency values of Michaelian and Ziegler²⁰ contributes proportionately more and shows slightly higher thermodynamic function values than those obtained by other investigators^{2, 10, 18, 19, 22, 26, 27}. While the calculated heat capacity deviation is at most 1.36% above the experimental value (this deviation is close to the experimental uncertainty in heat capacity, specified as $\pm 1.0\%$), our calculated entropy values with maximum deviation of 0.22% above the experimental value are well within the specified entropy measurement error range of $\pm 0.41\%$ (Table 1).

If we accept the correctness of the values of newer low frequency skeletal frequencies^{3, 6, 20}, and if we note the somewhat diffuse character of the specified experimental uncertainty $(\pm 1.0\%)$, measurements made close to the normal boiling point of naphthalene), it appears that the calculated thermodynamic functions (this work, Tables 2, 3 and 4) at high temperatures are more realistic than those obtained previously^{2, 10, 18, 19, 22, 26, 27}. The fact that more recent studies^{3, 6, 20} of naphthalene IR and Raman spectra for $A_{\rm u}$ -mode skeletal frequencies yield considerably lower frequency values than those assigned earlier^{18, 19, 22, 27} from the "force-fit" adjustment of naphthalene vibrational frequencies with respect to the available experimental heat capacity and entropy data (ref. 2; see also Table 1, this work), assures us of the necessity of re-evaluating the overall thermodynamic consistency of frequency assignments for naphthalene as found in the literature.

a-Halonaphthalenes

To calculate the thermodynamic functions of α -halogenated naphthalenes (α -C₁₀H₇X, where X = F, Cl, Br and I) the available spectral data of Michaelian

and Ziegler²⁰ were used. With lack of any direct evidence as to which naphthalenc C-H stretching vibration is replaced by the substituent C-X stretching vibration, the lowest frequency naphthalene C-H stretch at 2978 cm⁻¹ was selected for this exchange. The required C-X stretch frequency values were then taken from Michaelian and Ziegler²⁰ assignments. The other eight high frequency naphthalene C-H vibrations (used in this work, taken from ref. 27) were assumed to remain constant. The missing lowest B_{1u} frequency for α -fluoro- and α -bromo-naphthalene following Michaelian and Ziegler²⁰, by analogy with given α - chloro- and α -iodo-naphthalene assignment, was assigned the value of 180 cm⁻¹. Similarly, in accordance with the given value of 790 cm⁻¹ for α -fluoronaphthalenes, was assigned the value of 790 cm⁻¹. Finally, and again in accordance with the given values of α -fluoro-, α -chloro- and α -iodo-naphthalenes²⁰, the following assignments were made for α -iodonaphthalenes²⁰, the following assignments were made for α -iodonaphthalenes²⁰.

Structural data needed for moment of inertia calculations were obtained in analogy with the halogenated benzenes following the work of Butler and Lielmezs⁴. Bond lengths of 1.30, 1.70, 1.88 and 2.08 Å were assumed for the C-F, C-Cl, C-Br and C-I bonds, respectively. C-C bonds were taken as 1.40 Å for the fluoro- and chloro-naphthalenes, and 1.405 Å for the bromo- and iodo-naphthalenes. Similar to the structural calculations of naphthalene, the α -halonaphthalenes were assumed to be regular and planar molecules.

β-Halonaphthalenes

The thermodynamic functions of β -halonaphthalenes (β -C₁₀H₇X, where X = F, Cl, Br and I) were calculated using the assignments of Michaelian and Ziegler²⁰. This set is nearly complete, except for high frequency C-H vibrations and the missing C-X (X = F, Cl, Br, I) stretching fundamentals for β -bromo- and β -iodo-naphthalene. Advantage was taken of the similarity between the α - and β -halonaphthalenes, in assigning the two missing C-X stretching vibrations the values of 300 cm⁻¹ and 250 cm⁻¹ in accordance with the corresponding frequencies for α - bromo- and α -iodo-naphthalenes. The remaining eight high frequency C-H vibrations were assumed to remain the same as for naphthalene and α -halonaphthalenes. The moments of inertia for β -halonaphthalene series were calculated assuming the same bond lengths and bond angles as for the α -halonaphthalenes.

Disubstituted halonaphthalenes

The thermodynamic functions for disubstituted halonaphthalenes (1,4-dichloronaphthalene; 1,4-dibromonaphthalene and 2,3-dibromonaphdibromothalene) were calculated using chiefly the assignments as presented by Michaelian and Ziegler²⁰. These compounds contain two C-X (X = F, Cl, Br, I) vibrations (replacing the 1132 cm⁻¹ naphthalene fundamentals), two out-of-plane C-X vibrations (replacing a 935 cm⁻¹ and a 843 cm⁻¹ assignment) and two C-X stretching vibrations which appear instead of the high frequency 2978 cm⁻¹ and the 2997 cm⁻¹ naphthalene fundamentals. The missing B_{2u} fundamental was assumed to be of 745 cm⁻¹ for all three dihalonaphthalenes in accordance with the monosubstituted naphthalenes. Finally, frequencies of 517 cm⁻¹ (B_{1g}) and 371 cm⁻¹ (B_{2u}) were assigned to 1,4dibromo-naphthalene assuming it to be of the same value as that of the corresponding fundamental of 1,4-dichloronaphthalene. It is of interest to note that although skeletal vibrations differ little in this group, the lower moments product and higher C-X frequencies for 1,4-dichloronaphthalene cause it to have lower function values than for the heavier 1,4-dibromonaphthalene. Thermodynamic function values, however, are very nearly the same for 1,4-dibromonaphthalene and for 2,3-dibromonaphthalene and for 2,3-dibromonaphthalene indicating that at least for this exchange, the substituent position has only a small effect. The moments of inertia were calculated assuming the planarity of molecules, and the same bond lengths and bond angles as those used for α - and β -halonaphthalenes.

Accuracy and range of reliability

In this work, all values are in cal per gram mole K units and apply to the ideal gas state at 1 atm pressure. For internal consistency and precision, tabulated values are given to ± 0.1 cal per gram mole K. However, probable errors may be larger than this.

The percentage errors ascribed below to the calculated thermodynamic functions are really estimates. These estimates were obtained considering the four general sources: mathematical errors due to the round-off in the computer; errors in bond lengths, bond angles and in geometrical asymmetry of the molecule; errors in frequency assignments such as improper analysis, liquid state frequency shifts; errors due to the inapplicability of the basic assumptions, for instance anharmonicity. Several tests were run to determine the extent of these errors. The possibility of mathematical round-off errors was quickly reduced by running the calculations in extended precision — no appreciable change in the calculated thermodynamic function values was detected. However, errors due to the estimation of structural properties are very real as bond lengths and angles are not known precisely for most of the molecules. Hence, assuming an uncertainty in bond lengths of ± 0.01 Å, all bond lengths for α -fluoronaphthalene were increased by 0.02 Å. The resulting product of moments of inertia is about 10% higher (or about the difference in the products of the moments of inertia between β - and α -halonaphthalenes). This increased the thermodynamic function values for α -fluoronaphthalene by less than 0.1%. Very little error, therefore, is introduced in calculations due to the structural uncertainties. The most likely source of error, however, is the ever present uncertainty in the assignment values of the naphthalene fundamental vibrations. For instance ,calculation shows that, at 1000 cm^{-1} , a frequency shift of 200 cm^{-1} will cause a 0.7% difference in the thermodynamic function values at 522.7 K. Table 1 shows that for this temperature the experimental error for heat capacity is $\pm 1.0\%$ while for entropy $\pm 0.41\%$. This effect increases at lower frequencies and temperatures. In addition, for some of the substituted naphthalenes (especially α -jodonaphthalene and the dihalonaphthalenes) several frequencies were estimated. Hence, while present assignments fit the observed behavior at temperatures near the normal boiling point (Table 1) there is possible deviation at somewhat higher temperatures. On the other hand, Hanson¹¹ has shown that for the napthalene system the inaccuracies in gaseous function values due to frequency shifts in passing from the gaseous to the liquid state (the used data, this work, were in the liquid state) are negligible. The neglected effect of anharmonicity will become significant only at elevated temperatures and should in any case be less than 1% for the stable, strongly bonded napthalene series.

This discussion indicates that, barring major errors in the frequency assignments, the expected overall error should be within ± 0.5 -2.0% range. This expectation is fully brought out by Table 1, which indicates that even if the frequency assignments are estimated, errors in the calculated thermodynamic functions are low. Indeed, it is thought that for this naphthalene series with the normal boiling point range from 480-600 K, the presented thermodynamic functions will be reliable from approximately 400 to 1000 K; the expected error range of ± 0.5 to $\pm 2.0\%$ being well within the general experimental uncertainty of $\pm 3.0\%$ as specified by Whiffen³⁰.

NOMENCLATURE

Å	Angstrom
$C_{\rm p}^0$	heat capacity, cal per mole K
e.u.	entropy unit, cal per mole K
$-(F^0 - H_0^0)/T$	free energy function, cal per mole K
$(H^0 - H_0^0)/T$	enthalpy function, where $H_0^0 = H^0$ at 0 K, cal per mole K
So	entropy, e.u.
σ	molecular symmetry number
v	wave number, cm ⁻¹
Superscript o	reference state, referring to the hypothetical state of an ideal gas at
	1 atm
Subscript p	pressure, atm

ACKNOWLEDGEMENT

The financial assistance of the National Research Council of Canada is gratefully acknowledged.

REFERENCES

- 1 J. G. Aston and J. J. Fritz, Thermodynamics and Statistical Mechanics, Wiley, New York, 1959,
- 2 G. M. Barrow and A. L. McClellan, J. Am. Chem. Soc., 73 (1951) 573.
- 3 A. Bree and R. A. Kydd, Spectrochim. Acta, Part A, 26 (1970) 1971.
- 4 J. B. Butler and J. Lielmezs, J. Chem. Eng. Data, 10 (1969) 63.
- 5 P. N. B. Chanh and Y. Haget-Bouillaud, Acta Crystallogr., Sect. B, 28 (1972) 3400.

- 6 G. W. Chantry, A. Anderson and H. A. Gebbie, Spectrochim. Acta, 20 (1964) 1465.
- 7 D. W. Cruikshank, Acta Crystallogr., 10 (1957) 504.
- 8 J. M. Dereppe, J. Degelaen and M. Van Meersche, J. Mol. Struct., 17 (1973) 225.
- 9 P. Diehl and J. Vogt, Org. Magn. Reson., 6 (1974) 33.
- 10 D. E. Freeman and I. G. Ross, Spectrochim. Acta, 16 (1960) 1409.
- 11 D. M. Hanson, J. Chem. Phys., 51 (1969) 5063.
- 12 I. Harada and T. Shimanouchi, J. Chem. Phys., 44 (1966) 2016.
- 13 G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules, D. Van Nostrand, Princeton, N.J., 1946.
- 14 M. Hineno and H. Yoshinaga, Spectrochim. Acta, 31H (1974) 617.
- 15 A. Karonen, J. Rasanen and F. Stenman, Commentat. Phys.-Math. Fin. Vet., 46 (1976) 69.
- 16 A. Karonen and F. Stenman, Commentat. Phys.-Math. Fin. Vet., 46 (1976) 85.
- 17 T. P. Lin and C. H. Ting, J. Chin. Chem. Soc., (Taipei), 18 (1971) 19.
- 18 E. R. Lippincott and E. J. O'Reilly, Jr., J. Chem. Phys., 23 (1955) 238.
- 19 A. L. McClellan and G. C. Pimentel, J. Chem. Phys., 23 (1955) 245.
- 20 K. H. Michaelian and S. M. Ziegler, Appl. Spectrosc., 27 (1973) 13.
- 21 G. H. Miller, Chem. Eng. Data, 8 (1963) 69.
- 22 S. S. Mitra and H. J. Bernstein, Can. J. Chem., 57 (1959) 553.
- 23 W. B. Person, G. C. Pimentel and O. Schepp, J. Chem. Phys., 23 (1955) 230.
- 24 G. C. Pimentel and A. L. McClellan, J. Chem. Phys., 20 (1952) 270.
- 25 G. C. Pimentel, A. L. McClellan, W. B. Person and O. Schnepp, J. Chem. Phys., 23 (1955) 234.
- 26 D. B. Scully and D. H. Whiffen, Spectrochim. Acta, 16 (1960) 1409.
- 27 P. P. Sharma and R. D. Singh, Ind. J. Appl. Phys., 11 (1973) 618.
- 28 R. D. Singh and R. S. Singh, Ind. J. Appl. Phys., 8 (1970) 348.
- 29 J. Streal and L. C. Moore, *Curve Fitting Techniques*, The University of British Columbia Computer Centre, B.C., 1976.
- 30 D. H. Whiffen, J. Chem. Soc., (1956) 1350.